大发体育平台-(中国)科技公司,

您当前所在位置: 大发体育平台-(中国)科技公司, > 学术动态 > 正文

林学院举行系列学术讲座——林木遗传育种与生物技术创新平台聘请外国专家特色项目

日期:2018-09-17 点击数:

应我校“聘请外国专家特色项目”和“国家自然科学基金项目”的邀请,维也纳自然资源和生命科学大学森林与土壤科学系Prof. Douglas L. Godbold将围绕Underground Ecology进行为期约三周的全英文系列学术讲座(授课与研讨)。讲座内容主要包括:(1) Biodiversity and ecosystem function(Ecosystem stability; Ecosystem processes);(2)Environmental change(Climate change; Soil acidification; Ozone; Elevated CO2; Plants and temperature; Turnover of soil organic matter; Microclimate.“聘请外国专家特色项目”的运行周期为3年,今年为该项目实施的第3年。

欢迎广大研究生同学通过以下邮箱踊跃报名参加。授课时间和地点请与硕士研究生曲美学同学联系。

邮箱:863283892 @qq.com

QQ群:807562672

手机:18846126854

授课人简介:

Prof. Douglas L. Godbold,维也纳自然资源和生命科学大学(原维也纳农业大学)教授,世界知名的林学家和森林生态学家。担任Forestry与Journal of Plant Nutrition & Soil Science两个期刊的编委。是以下国际主流刊物的特约审稿人Plant & Soil, Canadian Journal of Forestry Research, Forest Ecology & Management, Tree Physiology, Global Change biology, Water Air & Soil Pollution, Plant Ecology, Canadian Journal of Botany, Chemosphere Ecology Letters, Environmental Pollution, Journal of Arid Environments, Journal of Environmental Quality, Journal of Experimental Botany, Journal of Plant Physiology, Journal of Tropical Ecology, New Phytologist, Pedobiologia, Plant Cell & Environment, Plant Physiology & Biochemistry, Scanning Microscopy.

1、主要学习经历

1976—1979年,英国苏塞克斯大学(University of Sussex)生物系,理学学士;1979—1983,英国利物浦大学(University of Liverpool)植物系,博士;1983—1985,德国哥廷根大学(University of Gõttingen)森林植物研究所,博士后.

2、主要工作经历

1984—1986,德国哥廷根大学(University of Gõttingen),森林植物研究所,皇家学会研究奖学金;1986—1997,德国哥廷根大学(University of Gõttingen),森林植物研究所,研究员;其中1992年,加拿大埃德蒙顿阿尔伯塔大学,植物系,访问科学家;1995—1996,美国哈佛大学生物和进化生物学系,Charles Bullard Fellowship奖学金;1998—2011,英国班戈大学(Bangor University),环境、自然资源和地理学院,森林科学教授;2011—至今,维也纳自然资源和生命科学大学,森林生态研究所,森林生态学教授.

3、他本人及其所在团队近期代表性论文

(1)Fine Root Morphology, Biochemistry and Litter Quality Indices of Fast- and Slow-growing Woody Species in Ethiopian Highland Forest. Ecosystems. 2018, 21(3): 482-494.

(2)The Carbon Sequestration Potential of Degraded Agricultural Land in the Amhara Region of Ethiopia. Forests. 2018, 9(8).

(3)Soil organic carbon changes following degradation and conversion to cypress and tea plantations in a tropical mountain forest in Kenya. Plant & Soil. 2018, 422(1-2): 527-539.

(4)Diversionary feeding can reduce red deer habitat selection pressure on vulnerable forest stands, but is not a panacea for red deer damage. Forest Ecology & Management. 2018, 407: 166-173.

(5)Effects of crown architecture and stand structure on light absorption in mixed and monospecific Fagus sylvatica andPinus sylvestrisforests along a productivity and climate gradient through Europe. Journal of Ecology. 2018; 106(2): 746-760.

(6)Seed Dispersal, Microsites or Competition: What Drives Gap Regeneration in an Old-Growth Forest? An Application of Spatial Point Process Modelling. Forests. 2018; 9(5).

(7)Mycorrhizas and soil ecosystem function of co-existing woody vegetation islands at the alpine tree line. Plant and Soil, 2017, 411: 467–481

(8)Response of soil microbial community to afforestation with pure and mixed species. Plant and Soil, 2017. DOI: 10.1007/s11104-016-3073-0

(9)Turbulent energy and carbon dioxide exchange along an early-successional windthrow chronosequence in the European Alps. Agricultural and Forest Meteorology, 2017, 232, 576-594

(10)Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem. Functional Ecology, 2017. DOI: 10.1111/1365-2435.12805

(11)Elevated CO2and Tree Species Affect Microbial Activity and Associated Aggregate Stability in Soil Amended with Litter. Forests, 2017, 8, 70; doi:10.3390/f8030070.

(12)Deforestation and land use strongly effect soil organic carbon and nitrogen stock in Northwest Ethiopia. Catena, 2017, 153, 89-99.

(13)Evaluation of the microbiome of decaying alder nodules by next generation sequencing. Endocytobiosis and Cell Research, 2017.

(14)Adaptive root foraging strategies along a boreal-temperate forest gradient. New Phytologist, 2017. doi: 10.1111/nph.14643.

(15)Fine root morphology, biochemistry and litter quality indices of fast- and slow-growing woody species in Ethiopian highland forest. Ecosystems, 2017.

(16)Fine root dynamics in Afromontane forest and adjacent land uses in the northwest Ethiopian highlands. Forests 2017, 8, 249; doi:10.3390/f8070249

(17)Tree species identity influences the vertical distribution of labile and recalcitrant carbon in a temperate deciduous forest soil. Forest Ecology & Management, 2016, 359:352-360

(18)Overyielding of temperate deciduous tree mixtures is maintained under throughfall reduction. Plant & Soil, 2016, DOI 10.1007/s11104-016-2930-1

(19)Potassium fertilization affects the distribution of fine roots but does not change ectomycorrhizal community structure. Annals of Forest Science, 2016, DOI 10.1007/s13595-016-0556-3

(20)Elevated Atmospheric CO2Affects Ectomycorrhizal Species Abundance and Increases Sporocarp Production under Field Conditions.Forests. 2015, 6(4):256-1273. 

(21)Bacterial growth and respiration responses upon rewetting dry forest soils: Impact of drought-legacy. Soil Biol Biochem. 2013, 57: 477-486.

(22)Elevated atmospheric CO2and humidity delay leaf fall inBetula pendula, but not inAlnus glutinosaorPopulus tremula×tremuloides.Ann Forest Sci.2014,71(8): 831-842.

(23)Elevated CO2enrichment induces a differential biomass response in a mixed species temperate forest plantation. New Phytol. 2013, 198(1):156-168.

(24)Effects of Elevated CO2on Litter Chemistry and Subsequent Invertebrate Detritivore Feeding Responses.Plos One. 2014: 9(1)(25)It’s Complicated: Intraroot System Variability of Respiration and Morphological Traits in Four Deciduous    

Tree Species.Plant Physiol. 2014, 166(2):736-745.

(26)Deciduous woodland exposed to elevated atmospheric CO2has species-specific impacts on anecic earthworms.Appl Soil Ecol. 2014, 80: 84-92.

(27)The production and turnover of extramatrical mycelium of ectomycorrhizal fungi in forest soils: role in carbon cycling. Plant & Soil. 2013, 366(1-2): 1-27.

(28)Bacterial growth and respiration responses upon rewetting dry forest soils: Impact of drought-legacy. Soil Biol Biochem. 2013, 57: 477-486.

(29)Drivers of increased soil respiration in a poplar coppice exposed to elevated CO2. Plant & Soil. 2013; 362(1-2): 93-106

(30)Tree species diversity interacts with elevated CO2to induce a greater root system response. Global Change Biol. 2013, 19(1): 217-228.

(31)Evaluation of methods to estimate production, biomass and turnover of ectomycorrhizal mycelium in forests soils-A review. Soil Biol Biochem. 2013, 57: 1034-1047.

(32)Bacterial salt tolerance is unrelated to soil salinity across an arid agroecosystem salinity gradient. Soil Biol Biochem. 2011, 43, 1881-1887.

(33)Free atmospheric CO2enrichment (FACE) did not affect symbiotic N2-fixation or soil carbon content and stabilization in a mixed deciduous stand in Wales. Biogeosciences,2010,8, 353-364.